ROBOTICS ENGINEERING (BS) / ROBOTICS ENGINEERING (MS) (COMBINED OPTION)

Program Overview

BS Overview

Robotics Engineering degree is a four-year course of study leading to exciting careers and/or advanced studies in robotics and automation. The robotics engineering faculty are dedicated to undergraduate and graduate teaching and to working closely with students at all levels of their study. The program equips students with the practical skills of an engineer combined with the fundamental knowledge and understanding gained through the study of physics. The program allows for a focus on the hardware, modeling and programming all of which are the integral components of robotics.

The application of robotics is a "multi-craft" activity in that it is the blending of multiple disciplines including computer engineering, mechanical engineering, and electrical engineering. A roboticist engages in the design, construction, and programming of robotic systems, including wheeled mobile robots, drones (unmanned aerial systems), autonomous marine vehicles, space systems, and industrial robot manipulators.

Career Opportunities

Students graduating with a Bachelor's degree in Robotics Engineering typically work in the robotics and automation industry or continue their studies in graduate school, or enter the armed services.

MS Overview

Master of Science degree in Robotics Engineering offers a comprehensive course of study in robotics. Research opportunities exist for students to actively participate in the program's research activities.
The research areas include image processing, computer vision, artificial intelligence, industrial robot manipulators, unmanned aerial vehicles, autonomous ground robots, embedded systems, and microelectronics.

Career Opportunities

Robotics Engineering graduates typically work in the robotics industry, continue their studies in doctoral programs at premier institutions.

Program of Study

Code	Title	Credit Hours
Core IMPACTS Area : Institutional Priorities	1	$\mathbf{4 - 5}$
COMM 1110	Public Speaking	3
ITDS 1779	Scholarship Across the Disciplines	2
LEAD 1705	Introduction to Servant Leadership	2
PERS 1506	Perspectives 1-hour	1
PERS 1507	Perspectives 2-hour	2

Foreign Language Course Options

ARAB, CHIN, FREN, GERM, GREK, ITAL, JAPN, KREN, LATIN, PORT, SPAN - 1001, 1002, 2001, 2002		
SWAH 1001	Elementary Swahili I	
SWAH 1002	Elementary Swahili II	
Core IMPACTS Area : Mathematics \& Quantitative Skills ${ }^{1}$		3-7
DATA 1501	Introduction to Data Science	3
MATH 1001	Quantitative Skills and Reasoning	3
MATH 1101	Introduction to Mathematical Modeling	3
MATH 1111	College Algebra	3
MATH 1113	Pre-Calculus	4
MATH 1125	Applied Calculus	3
MATH 1131	Calculus with Analytic Geometry I	4
MATH 1132	Calculus with Analytic Geometry II	4
MATH 1165	Computer-Assisted Problem Solving	3
MATH 1401	Introduction to Statistics	3
MATH 1501	Calculus I	4
MATH 2125	Introduction to Discrete Mathematics	3
STAT 1401	Elementary Statistics	3
Core IMPACTS Area : Political Science and U.S. History		6
HIST 2111	U. S. History to 1865	3
or HIST 2112	U. S. History since 1865	
POLS 1101	American Government	3
Core IMPACTS Area : Arts, Humanities, and Ethics		6
Select one Fine Arts course		3
ARTH 1100	Art Appreciation	
ARTH 2125	Introduction to the History of Art I- Prehistoric through Gothic	
ARTH 2126	Introduction to the History of Art II- Renaissance through Modern	
MUSC 1100	Music Appreciation	
THEA 1100	Theatre Appreciation	
ITDS 1145	Comparative Arts ${ }^{2}$	
Select one Humanities course		3
ENGL 2111	World Literature I	
ENGL 2112	World Literature II	
ITDS 1774	Introduction to Digital Humanities	
PHIL 2010	Introduction to Philosophy	
ITDS 1145	Comparative Arts ${ }^{2}$	
Core IMPACTS Area : Communicating in Writing		6
ENGL 1101	English Composition I	3
ENGL 1102	English Composition II	3
Core IMPACTS Area : Technology, Mathematics, and Sciences ${ }^{1}$		7-11
ANTH 1145	Human Origins	3
ASTR 1105	Descriptive Astronomy: The Solar System	3
ASTR 1106	Descriptive Astronomy: Stars and Galaxies	3
ASTR 1305	Descriptive Astronomy Lab	1
ATSC 1112	Understanding the Weather	3
ATSC 1112L	Understanding the Weather Lab	1
BIOL 1125	Contemporary Issues in Biology Non-Lab	3
BIOL 1215K	Introductory Biology	4
BIOL 1225K	Contemporary Issues in Biology with Lab	4
CHEM 1151 \& 1151L	Survey of Chemistry I and Survey of Chemistry I Lab	4

Select one PEDS course (https://catalog.columbusstate.edu/coursedescriptions/peds/\#peds)

1 The hours applied in the Institutional Priorities; Mathematics \& Quantitative Skills; and Technology, Mathematics, and Sciences areas must add to 18 credit hours.
2 ITDS 1145 Comparative Arts, though listed under both Fine Arts and Humanities, may be taken only once.

Major Requirements

Field of Study Requirements Total
18

Required for the Major

Minimum grade of C is required
ENGR 1701 Introduction to Robotics 1
ENGR 2115 Statics 3
ENGR 2125 Dynamics of Rigid Bodies 3
ENGR 2206 Digital Logic 4
ENGR 3235 Circuit Analysis 3
ENGR 3236 Introduction to Signal Processing 3
ENGR 3245 Robotics Engineering Design Lab 2
ENGR 3255 Sensors and Actuators 3

ENGR 3275 Feedback Control Systems 3
ENGR 4391 Robotics Senior Design 12
ENGR 4392 Robotics Senior Design 2
ENGR 5151 G Computer Vision 1 (Also applies toward the 3 master's degree requirements)
ENGR 5161U Elements of Machine Intelligence 3
ENGR 5176U Kinematics and Dynamics 3
ENGR 5236G Microelectronic Circuits (Also applies toward the 3 master's degree requirements)
ENGR 5238G Introduction to Embedded Systems (Also applies 3
toward the master's degree requirements)
MATH 3107 Differential Equations 3
MATH 3175 Introduction to Probability 3
Required for the Major Total 50
Major Electives
Include 1 hour from MATH 1132 in Area D 1
Choose 9 hours from the following options: 9
Any 1000+ science course

Any 1000+ ENGR course
Any $2000+$ MATH/STAT class with advisor approval
Any $3000+$ CPSC class with advisor approval
Area H Total

Master's Degree Requirements

Area 1

The following 3 courses are taken with the bachelor's degree but also count toward the master's degree requirements.

ENGR 5151G	Computer Vision 1
ENGR 5236G	Microelectronic Circuits
ENGR 5238G	Introduction to Embedded Systems
Take four additional courses from the following list to accumulate an	12
additional 12 credit hours in Area 1:	
ENGR 6137	Dynamic Optimization
ENGR 6145	Human-Robot Interactions
ENGR 6148	Military Applications in Robotics
ENGR 6152	Computer Vision 2
ENGR 6162	Machine Intelligence and Synthesis
ENGR 6167	Multi-Robot Systems
ENGR 6172	Multivariable Linear Controls
ENGR 6173	Nonlinear Controls
ENGR 6178	Biomechanics
ENGR 6239	Embedded Systems Design
ENGR 6555	Selected Topics in Robotics
Any 5000+ CPSC/MATH class with advisor approval	
Area 1 Total	

Area 2

Choose one of the following 2 options for 9 additional credit hours 9
Thesis Option
ENGR 6000 Thesis Defense
ENGR 6999 Thesis Research (Repeat to complete a total of 9 hours)

Nonthesis Option

Take one of the following two courses twice for a total of 6 hours
ENGR 6399 Graduate Research Project
ENGR 6689 Supervised Graduate Internship
Choose one of the following courses that is not applied in Area 1:

ENGR 6137	Dynamic Optimization
ENGR 6145	Human-Robot Interactions
ENGR 6148	Military Applications in Robotics
ENGR 6152	Computer Vision 2
ENGR 6162	Machine Intelligence and Synthesis
ENGR 6167	Multi-Robot Systems
ENGR 6172	Multivariable Linear Controls
ENGR 6173	Nonlinear Controls
ENGR 6178	Biomechanics
ENGR 6239	Embedded Systems Design
ENGR 6555	Selected Topics in Robotics
Any 5000+ CPSC/MATH class with advisor approval	
Area 2 Total	

Total Credit Hours 144

Program Map BS/MS Robotics Engineering Non-Thesis Option 1

Course	Title	Credit
	Hours	

First Year

Fall

ENGL 1101	English Composition I (minimum grade of C)	3
MATH 1131	Calculus with Analytic Geometry I (minimum grade of C)	4
CHEM 1211	Principles of Chemistry I (minimum grade of C)	3
CHEM 1211L	Principles of Chemistry I Lab (minimum grade of C)	1
ENGR 1701	Introduction to Robotics (minimum grade of C)	1
ENGR 2255	Engineering Graphics and Computer Aided Design (minimum grade of C)	3
Area B2	Institutional Options Elective ${ }^{1}$	1
	Credit Hours	16
Spring		
ENGL 1102	English Composition II (minimum grade of C)	3
MATH 1132	Calculus with Analytic Geometry II (minimum grade of C)	4
PHYS 2211	Principles of Physics I (minimum grade of C)	3
PHYS 2311	Principles of Physics I Lab (minimum grade of C)	1
Area H	Elective (minimum grade of C) ${ }^{2}$	3
KINS 1106 or PHED 1205	Lifetime Wellness or Concepts of Fitness	2
	Credit Hours	16

Second Year

Fall

MATH 2115	Introduction to Linear Algebra (minimum grade of C)	3
PHYS 2212	Principles of Physics II (minimum grade of C)	3
PHYS 2312	Principles of Physics II Lab (minimum grade of C)	1
ENGR 2115	Statics (minimum grade of C)	3
ENGR 2221	Computing for Engineers 1 (minimum grade of C)	3
Area E	Behavioral Science Elective ${ }^{3}$	3
	Credit Hours	$\mathbf{1 6}$

Spring

MATH 3107 Differential Equations (minimum grade of 3 C)
ENGR 2206 Digital Logic (minimum grade of C) 4
ENGR 2125 Dynamics of Rigid Bodies (minimum grade 3 of C)
Area $\mathrm{H} \quad$ Elective $(\text { minimum grade of } \mathrm{C})^{2} 3$

Area B1	Institutional Options Elective ${ }^{4}$	3	ENGR 6399	Graduate Research Project	3		
	Credit Hours	16		Credit Hours	12		
Third Year				Total Credit Hours	147		
Fall							
MATH 2135	Calculus with Analytic Geometry 3 (minimum grade of C)	4	Footnotes				
ENGR 3235	Circuit Analysis (minimum grade of C)	3	Area B2: ITDS 1779 (2) or LEAD 1705 (2) or PERS 1506 (1; may be repeated with different topic) or PERS 1507 (2).				
ENGR 3236	Introduction to Signal Processing (minimum grade of C)	3	${ }^{2}$ Area H: ENGR 1000+, MATH/STAT 3000+, CPSC 3000+, MATH 2125, Science 1000+				
ENGR 5245U	minimum grade of C	2	${ }^{3}$ ECON 2105 or ECON 2106 (recommended)				
Area C1	Humanities Elective ${ }^{5}$	3	${ }_{5}^{4}$ Area B1: COMM 1110 or FL 1001, 1002, 2001, 2002				
	Credit Hours	15	${ }_{6}^{5}$ Area C1: ENGL 2111, 2112; ITDS 1145,1155, 2125; PHIL 2010				
Spring Area C2: ARTH 1100, 2125, 2126; ITDS 1145, MUSC 1100, THEA 1100 7 HIST 2111 or HIST 2112							
MATH 3175	Introduction to Probability (minimum grade of C)	3	8 World Culture: ANTH 1105, 1107, 2105, 2136; HIST 1111, 1112; ENGL 2136, GEOG 1101, ITDS 1156				
ENGR 3255	Sensors and Actuators (minimum grade of C)	3	${ }^{9}$ Area 1 Graduate electives: - ENGR 6137 Dynamic Optimization				
ENGR 3275	Feedback Control Systems (minimum grade of C)	3	- ENGR 6145 Human-Robot Interactions - ENGR 6148 Military Applications in Robotics				
Area H	Elective (minimum grade of C) ${ }^{2}$	3	- ENGR 6152 Computer Vision 2				
PEDS	Physical Education course 1***	1	- ENGR 6162 Machine Intelligence and Synthesis				
Area C2	Fine Arts Elective ${ }^{6}$	3	- ENGR 6167 Multi-Robot Systems				
	Credit Hours	16	- ENGR 6172 Multivariable Linear Controls				
Fourth Year			- ENGR 6173 Nonlinear Controls				
Fall			- ENGR 6178 Biomechanics				
ENGR 4391	Robotics Senior Design 1 (minimum grade of C)	2	- ENGR 6239 Embedded Systems Design - ENGR 6555 Selected Topics in Robotics				
ENGR 5161U	Elements of Machine Intelligence (minimum grade of C)	3	- any 5000+ CPSC/MATH class with advisor approval				
ENGR 5176U	Kinematics and Dynamics (minimum grade of C)	3	BS/MS Robotics Engineering Non-Thesis Option 2				
ENGR 5236G	Microelectronic Circuits	3	Course	Title	Credit		
Area E	American History ${ }^{7}$	3					
	Credit Hours	14	First Year				
Spring			Fall				
ENGR 4392	Robotics Senior Design 2 (minimum grade of C)	2	ENGL 1101	English Composition I (minimum grade of C)	3		
ENGR 5238G	Introduction to Embedded Systems	3	MATH 1131	Calculus with Analytic Geometry I (minimum grade of C)	4		
ENGR 5151U	Computer Vision 1 (minimum grade of C)	3					
POLS 1101	American Government	3	CHEM $1211 \begin{array}{ll}\text { Principles of Chemistry I (minimum grade } \\ \text { of C) }\end{array}$				
Area E	World Cultures Elective ${ }^{8}$	3					
Fifth Year	Credit Hours	14	CHEM 1211L	Principles of Chemistry I Lab (minimum grade of C)	1		
Fall			ENGR 1701	Introduction to Robotics (minimum grade of C)	1		
Area 1	Graduate Elective ${ }^{9}$	3					
Area 1	Graduate Elective ${ }^{9}$	3	ENGR 2255	Engineering Graphics and Computer Aided Design (minimum grade of C)			
Area 1	Graduate Elective ${ }^{9}$	3	Area B2	Institutional Options Elective ${ }^{1}$	1		
ENGR 6399	Graduate Research Project	3		Credit Hours	16		
Spring Credit Hours 12			Spring Credit Hours 16				
			ENGL 1102	English Composition II (minimum grade of C)			
Area 1	Graduate Elective ${ }^{9}$	3					
Area 1	Graduate Elective ${ }^{9}$	3	MATH 1132	Calculus with Analytic Geometry II (minimum grade of C)			
Area 2	Graduate elective from Area 1 list ${ }^{9}$	3					

- ENGR 6173 Nonlinear Controls
- ENGR 6178 Biomechanics
- ENGR 6239 Embedded Systems Design
- ENGR 6555 Selected Topics in Robotics
- any 5000+ CPSC/MATH class with advisor approval

BS/MS Robotics Engineering Thesis Option

Course	Title	Credit Hours
First Year		
Fall		
ENGL 1101	English Composition I (minimum grade of C)	3
MATH 1131	Calculus with Analytic Geometry I (minimum grade of C)	4
CHEM 1211	Principles of Chemistry I (minimum grade of C)	3
CHEM 1211L	Principles of Chemistry I Lab (minimum grade of C)	1
ENGR 1701	Introduction to Robotics (minimum grade of C)	1
ENGR 2255	Engineering Graphics and Computer Aided Design (minimum grade of C)	3
Area B2	Institutional Options Elective ${ }^{1}$	1
	Credit Hours	16
Spring		
ENGL 1102	English Composition II (minimum grade of C)	3
MATH 1132	Calculus with Analytic Geometry II (minimum grade of C)	4
PHYS 2211	Principles of Physics I (minimum grade of C)	3
PHYS 2311	Principles of Physics I Lab (minimum grade of C)	1
Area H	Elective (minimum grade of C) ${ }^{2}$	3
KINS 1106 or PHED 1205	Lifetime Wellness or Concepts of Fitness	2

Second Year Fall		
MATH 2115	Introduction to Linear Algebra (minimum grade of C)	3
PHYS 2212	Principles of Physics II (minimum grade of C)	3
PHYS 2312	Principles of Physics II Lab (minimum grade of C)	1
ENGR 2115	Statics (minimum grade of C) ENGR 2221	Computing for Engineers 1 (minimum grade of C)
Area E	Behavioral Science Elective	

Spring

MATH 3107 Differential Equations (minimum grade of C)

ENGR 2206	Digital Logic (minimum grade of C)	4
ENGR 2125	Dynamics of Rigid Bodies (minimum grade of C)	3
Area H	Elective (minimum grade of C) ${ }^{2}$	3
Area B1	Institutional Options Elective ${ }^{4}$	3
	Credit Hours	16
Third Year		
Fall		
MATH 2135	Calculus with Analytic Geometry 3 (minimum grade of C)	4
ENGR 3235	Circuit Analysis (minimum grade of C)	3
ENGR 3236	Introduction to Signal Processing (minimum grade of C)	3
ENGR 5245U	minimum grade of C	2
Area C1	Humanities Elective ${ }^{5}$	3
	Credit Hours	15
Spring		
MATH 3175	Introduction to Probability (minimum grade of C)	3
ENGR 3255	Sensors and Actuators (minimum grade of C)	3
ENGR 3275	Feedback Control Systems (minimum grade of C)	3
Area H	Elective (minimum grade of C) ${ }^{2}$	3
PEDS	Physical Education course 1***	1
Area C2	Fine Arts Elective ${ }^{6}$	3
	Credit Hours	16
Fourth Year		
Fall		
ENGR 4391	Robotics Senior Design 1 (minimum grade of C)	2
ENGR 5161U	Elements of Machine Intelligence (minimum grade of C)	3
ENGR 5176U	Kinematics and Dynamics (minimum grade of C)	3
ENGR 5236G	Microelectronic Circuits	3
Area E	American History ${ }^{7}$	3
	Credit Hours	14
Spring		
ENGR 4392	Robotics Senior Design 2 (minimum grade of C)	2
ENGR 5238G	Introduction to Embedded Systems	3
ENGR 5151U	Computer Vision 1 (minimum grade of C)	3
POLS 1101	American Government	3
Area E	World Cultures Elective ${ }^{8}$	3
	Credit Hours	14
Fifth Year		
Fall		
Area 1	Graduate Elective ${ }^{9}$	3
Area 1	Graduate Elective ${ }^{9}$	3
Area 1	Graduate Elective ${ }^{9}$	3
ENGR 6999	Thesis Research	3
	Credit Hours	12

Spring		
Area 1	${\text { Graduate Elective }{ }^{9}}^{9}$	3
Area 1	Graduate Elective 9	3
ENGR 6999	Thesis Research	3
ENGR 6999	Thesis Research	3
ENGR 6000	Thesis Defense	0
	Credit Hours	$\mathbf{1 2}$
	Total Credit Hours	$\mathbf{1 4 7}$

Footnotes

${ }^{1}$ Area B2: ITDS 1779 (2) or LEAD 1705 (2) or PERS 1506 (1; may be repeated with different topic) or PERS 1507 (2)
2 Area H: ENGR 1000+, MATH/STAT 3000+, CPSC 3000+, MATH 2125, Science 1000+
${ }^{3}$ ECON 2105 or ECON 2106 (recommended)
4 B1: COMM 1110 or FL 1001, 1002, 2001, 2002
5 Area C1: ENGL 2111, 2112; ITDS 1145, 1155, 2125; PHIL 2010
${ }^{6}$ Area C2: ARTH 1100, 2125, 2126; ITDS 1145, MUSC 1100, THEA 1100
7 HIST 2111 or HIST 2112
${ }^{8}$ World Culture: ANTH 1105, 1107, 2105, 2136; HIST 1111, 1112; ENGL 2136, GEOG 1101, ITDS 1156
9 Area 1 Graduate electives:

- ENGR 6137 Dynamic Optimization
- ENGR 6145 Human-Robot Interactions
- ENGR 6148 Military Applications in Robotics
- ENGR 6152 Computer Vision 2
- ENGR 6162 Machine Intelligence and Synthesis
- ENGR 6167 Multi-Robot Systems
- ENGR 6172 Multivariable Linear Controls
- ENGR 6173 Nonlinear Controls
- ENGR 6178 Biomechanics
- ENGR 6239 Embedded Systems Design
- ENGR 6555 Selected Topics in Robotics
- any 5000+ CPSC/MATH class with advisor approval

Admission Requirements:

- Complete application for admission into this Combined BS/MS program.
- Attain junior standing (60 credits).
- Achieve minimum institutional GPA of 3.0 overall and 3.2 calculated on the following courses:
- MATH 1131/1132/2115/3107
- PHYS 2211/2311/2212/2312
- ENGR 1701/2115/2125/2206/2221/2255

Academic Policies:

- No more than nine semester hours of graduate credit may be earned before completion of the baccalaureate degree.
- A maximum of two courses (not to exceed six semester credit hours) with a grade of "C" may apply to the master's degree.
- Students enrolled in the combined degree program must maintain a minimum graduate overall grade point average of 3.0 for the masters. The overall GPA of 3.0 also applies to undergraduate courses which
are required in the program. Students must be in Good Academic Standing to be eligible for graduation.

Combined degree students are expected to maintain Good Academic Standing as they progress
toward completing their programs. Students will be evaluated each term on the basis of the
overall GPA. The criteria for Good Academic Standing and Academic Probation are different for
undergraduate and graduate students.

Eligibility to Remain in the Combined Program:

- Maintain a GPA of 3.0 or better.
- Complete all courses in Areas F, G, and the graduate program of study with a grade of not more than one D or F and not more than two Cs .

Any student who does not satisfy the above conditions will be moved from the Combined program back into the BS in Robotics Engineering program.

